Orszag-Tang Vortex#
Imports#
# %pip install ../
import os
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1" # second gpu
# numerics
import jax
import jax.numpy as jnp
jax.config.update("jax_enable_x64", True)
# timing
from timeit import default_timer as timer
# plotting
import matplotlib.pyplot as plt
from matplotlib.gridspec import GridSpec
# fluids
from jf1uids import SimulationConfig
from jf1uids import get_helper_data
from jf1uids import SimulationParams
from jf1uids import time_integration
from jf1uids.fluid_equations.fluid import construct_primitive_state
from jf1uids import get_registered_variables
Initiatization#
from jf1uids.option_classes.simulation_config import BACKWARDS, FORWARDS, HLL, HLLC, MINMOD, OSHER, PERIODIC_BOUNDARY, BoundarySettings, BoundarySettings1D
print("👷 Setting up simulation...")
# simulation settings
gamma = 5/3
# spatial domain
box_size = 1.0
num_cells = 512
fixed_timestep = False
scale_time = False
dt_max = 0.1
num_timesteps = 10
# setup simulation config
config = SimulationConfig(
runtime_debugging = False,
progress_bar = True,
first_order_fallback = False,
return_snapshots = True,
num_snapshots = 200,
mhd = True,
dimensionality = 2,
box_size = box_size,
num_cells = num_cells,
fixed_timestep = fixed_timestep,
differentiation_mode = FORWARDS,
num_timesteps = num_timesteps,
limiter = MINMOD,
riemann_solver = HLL,
boundary_settings = BoundarySettings(
BoundarySettings1D(left_boundary = PERIODIC_BOUNDARY, right_boundary = PERIODIC_BOUNDARY),
BoundarySettings1D(left_boundary = PERIODIC_BOUNDARY, right_boundary = PERIODIC_BOUNDARY),
BoundarySettings1D(left_boundary = PERIODIC_BOUNDARY, right_boundary = PERIODIC_BOUNDARY))
)
helper_data = get_helper_data(config)
params = SimulationParams(
t_end = 0.5,
C_cfl = 0.4
)
registered_variables = get_registered_variables(config)
👷 Setting up simulation...
Setting the initial state#
from jax.random import PRNGKey, uniform
from jf1uids.option_classes.simulation_config import finalize_config
# Set the random seed for reproducibility
key = PRNGKey(0)
# Grid size and configuration
num_cells = config.num_cells
x = jnp.linspace(0, box_size, num_cells)
y = jnp.linspace(0, box_size, num_cells)
X, Y = jnp.meshgrid(x, y, indexing="ij")
# Initialize state
rho = jnp.ones_like(X) * gamma ** 2 / (4 * jnp.pi)
P = jnp.ones_like(X) * gamma / (4 * jnp.pi)
V_x = -jnp.sin(2 * jnp.pi * Y)
V_y = jnp.sin(2 * jnp.pi * X)
B_0 = 1 / jnp.sqrt(4 * jnp.pi)
B_x = -B_0 * jnp.sin(2 * jnp.pi * Y)
B_y = B_0 * jnp.sin(4 * jnp.pi * X)
# B_x = jnp.zeros_like(X)
# B_y = jnp.zeros_like(X)
B_z = jnp.zeros_like(X)
initial_magnetic_field = jnp.stack([B_x, B_y, B_z], axis=0)
dx = 1 / (num_cells - 1)
initial_state = construct_primitive_state(
config = config,
registered_variables = registered_variables,
density = rho,
velocity_x = V_x,
velocity_y = V_y,
magnetic_field_x = B_x,
magnetic_field_y = B_y,
magnetic_field_z = B_z,
gas_pressure = P
)
config = finalize_config(config, initial_state.shape)
Simulation#
snapshots = time_integration(initial_state, config, params, helper_data, registered_variables)
final_state = snapshots.states[-1]
|████████████████████████████████████████████████████████████████████████████████████████████████████| 100.0%
Animation#
states = snapshots.states
import matplotlib.animation as animation
fig, ax = plt.subplots()
cax = ax.imshow(states[0, 0, ...].T, cmap="jet", origin="lower", extent=[0, 1, 0, 1], norm=plt.Normalize(vmin=0, vmax=0.5))
fig.colorbar(cax)
ax.set_xlabel("x")
ax.set_ylabel("y")
ax.set_title("Density; Orszag-Tang Vortex")
def animate(i):
cax.set_array(states[i, 0, ...].T)
return cax,
ani = animation.FuncAnimation(fig, animate, frames=states.shape[0], interval=50)
ani.save("../figures/orszag_tang_animation.gif")
plt.show()

Slice#
# plot the pressure at y = 0.4277
y = jnp.linspace(0, 1, num_cells)
x = jnp.linspace(0, 1, num_cells)
# find the index closest to 0.4277
y_index = jnp.argmin(jnp.abs(y - 0.3125))
plt.plot(x, final_state[0, :, y_index], label = "Pressure")
plt.xlabel("x")
plt.ylabel("Pressure")
Text(0, 0.5, 'Pressure')

Divergence free#
# divergence of the magnetic field
from jf1uids._physics_modules._mhd._vector_maths import divergence2D
B_x = final_state[4, ...]
B_y = final_state[5, ...]
B_z = final_state[6, ...]
B = jnp.stack([B_x, B_y, B_z], axis=0)
divB = divergence2D(B, dx)
plt.imshow(divB.T, cmap = "jet", origin = "lower", extent=[0, 1, 0, 1])
plt.colorbar()
<matplotlib.colorbar.Colorbar at 0x7efbec5337f0>
